Ch1 Setting the scene
1.1 Graphics in action
1.3 What is Graphical Data Analysis (GDA)?
1.4 Using this book, the R code in it, and the books website
Graphics in action | 1
library(ggplot2) data(SpeedSki, package = "GDAdata") ggplot(SpeedSki, aes(x=Speed, fill=Sex)) + xlim(160, 220) + geom_histogram(binwidth=2.5) + xlab("Speed (km/hr)") + facet_wrap(~Sex, ncol=1) + ylab("") + theme(legend.position="none")
3
ggplot(SpeedSki, aes(Speed, fill=Sex)) + geom_histogram(binwidth=2.5) + xlab("Speed (km/hr)") + ylab("") + facet_grid(Sex~Event) + theme(legend.position="none")
What is Graphical Data Analysis (GDA)? | 6
ggplot(iris, aes(Petal.Length)) + geom_histogram()
7
library(ggthemes) ggplot(iris, aes(Petal.Length, Petal.Width, color=Species)) + geom_point() + theme(legend.position="bottom") + scale_colour_colorblind()
8
library(gridExtra) ucba <- as.data.frame(UCBAdmissions) a <- ggplot(ucba, aes(Dept)) + geom_bar(aes(weight=Freq)) b <- ggplot(ucba, aes(Gender)) + geom_bar(aes(weight=Freq)) c <- ggplot(ucba, aes(Admit)) + geom_bar(aes(weight=Freq)) grid.arrange(a, b, c, nrow=1, widths=c(7,3,3))
9
library(vcd) ucb <- data.frame(UCBAdmissions) ucb <- within(ucb, Accept <- factor(Admit, levels=c("Rejected", "Admitted"))) doubledecker(xtabs(Freq~ Dept + Gender + Accept, data = ucb), gp = gpar(fill = c("grey90", "steelblue")))
10
data(Pima.tr2, package="MASS") h1 <- ggplot(Pima.tr2, aes(glu)) + geom_histogram() h2 <- ggplot(Pima.tr2, aes(bp)) + geom_histogram() h3 <- ggplot(Pima.tr2, aes(skin)) + geom_histogram() h4 <- ggplot(Pima.tr2, aes(bmi)) + geom_histogram() h5 <- ggplot(Pima.tr2, aes(ped)) + geom_histogram() h6 <- ggplot(Pima.tr2, aes(age)) + geom_histogram() grid.arrange(h1, h2, h3, h4, h5, h6, nrow=2)
11
library(dplyr) PimaV <- select(Pima.tr2, glu:age) par(mar=c(3.1, 4.1, 1.1, 2.1)) boxplot(scale(PimaV), pch=16, outcol="red")
12
library(GGally) ggpairs(PimaV, diag=list(continuous=’density’), axisLabels=’show’)